
Vector Space Concepts
ECE 174 – Introduction to Linear & Nonlinear Optimization

Ken Kreutz-Delgado
ECE Department, UC San Diego

Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 1 / 25



Vector Space Theory

What are Vectors and Linear Vector Spaces?

What are Norms and Normed Linear Vector Spaces?

(Theory of Banach Spaces.)

What are Inner Products and Inner Product Vector Spaces?

(Theory of Hilbert Spaces.)

What are Linear Operators and the Geometry Induced by Linear
Operators.

(The ‘Four Fundamental Subspaces’ associated with a linear operator.)

What is a Linear Inverse Problem?

(Well-Posed and Ill-Posed Inverse Problems.)

How does one solve a linear inverse problem?

Minimum Norm Solution and Weighted Least Squares Solution.

Projection Theorem in Hilbert Spaces. (Orthogonality Principle.)

Generalized Inverses. (Pseudo-Inverse, QR-factorization, SVD.)
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Heuristic Concept of a Linear Vector Space

Many important physical, engineering, biological, sociological, economic, scientific
quantities, which we call vectors, have the following conceptual properties.

There exists a natural or conventional ‘zero point’ or “origin”, the zero
vector, 0,.

Vectors can be added in a symmetric commutative and associative manner
to produce other vectors

z = x + y = y + x , x ,y ,z are vectors (commutativity)

x + y + z , x + (y + z) = (x + y) + z , x ,y ,z are vectors (associativity)

Vectors can be scaled by the (symmetric) multiplication of scalars
(scalar multiplication) to produce other vectors

z = αx = xα , x ,z are vectors, α is a scalar (scalar multiplication of x by α)

The scalars can be members of any fixed field (such as the field of rational
polynomials). We will work only with the fields of real and complex numbers.

Each vector x has an additive inverse, −x = (−1)x

x − x , x + (−1)x = x + (−x) = 0
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Formal Concept of a Linear Vector Space

A Vector Space, X , is a set of vectors, x ∈ X , over a field, F , of scalars.

If the scalars are the field of real numbers, then we have a Real Vector Space.

If the scalars are the field of complex numbers, then we have a Complex
Vector Space.

Any vector x ∈ X can be multiplied by an arbitrary scalar α to form
α x = x α ∈ X . This is called scalar multiplication.

Note that we must have closure of scalar multiplication. I.e, we demand that
the new vector formed via scalar multiplication must also be in X .

Any two vectors x , y ∈ X can be added to form x + y ∈ X where the
operation “+” of vector addition is associative and commutative.

Note that we must have closure of vector addition.

The vector space X must contain an additive identity (the zero vector 0)
and, for every vector x , an additive inverse −x .

In this course we primarily consider finite dimensional vector spaces
dimX = n <∞ and mostly give results appropriate for this restriction.
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Linear Vector Spaces – Cont.

Any vector x in an n-dimensional vector space can be represented (with
respect to an appropriate basis–see below) as an n-tuple (n × 1 column
vector) over the field of scalars,

x =

ξ1...
ξn

 ∈ X = Fn = Cn or Rn .

We refer to this as a canonical representation of a finite-dimensional vector.
We often (but not always) assume that vectors in an n-dimensional vector
space are canonically represented by n × 1 column vectors.
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Linear Vector Spaces – Cont.

Any linear combination of arbitrarily selected vectors x1, · · · , xr drawn from
the space X

α1x1 + · · ·+ αrxr

for arbitrary r , and scalars αi , i = 1, · · · , r , must also be a vector in X .

This is easily shown via induction using the properties of closure under
pairwise vector addition, closure under scalar multiplication, and associativity
of vector addition.

This global ‘closure of linear combinations property of X ’ (i.e., the property
holds everywhere on X ) is why we often refer to X as a (globally) Linear
Vector Space.

This is in contradistinction to locally linear spaces, such as differentiable
manifolds, of which the surface of a ball is the classic example of a space
which is locally linear (flat) but globally curved.

Some important physical phenomenon of interest cannot be modeled by
linear vector spaces, the classic example being rotations of a rigid body in
three dimensional space (this is because finite (i.e., non-infinitesimal)
rotations do not commute.)
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Examples of Vectors

Voltages, Currents, Power, Energy, Forces, Displacements, Velocities,
Accelerations, Temperature, Torques, Angular Velocities, Income, Profits, .... ,
can all be modeled as vectors.

Example: Set of all m × n matrices. Define matrix addition by component-wise
addition and scalar multiplication by component-wise multiplication of the matrix
component by the scalar. This is easily shown to be a vector space.

We can place the elements of this mn-dimensional vector space into canonical
form by stacking the columns of an m × n matrix A to form an mn × 1
column vector denoted by vec(A) (sometimes also denoted by stack(A)).

Example: Take

X = {f (t) = x1 cos(ω1t) + x2 cos(ω2t) for −∞ < t <∞; x1, x2 ∈ R;ω1 6= ω2}

and define vector addition and scalar multiplication component wise. Note that

any vector f ∈ X has a canonical representation x =

(
x1
x2

)
∈ R2. Thus

X ∼= X ′ , R2, and without loss of generality (wlog) we often work with X ′ in
lieu of X .
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Examples of Vectors – Cont.

Important Example: Set of all Functions forms a Vector Space

Consider functions (say of time t) f and g , which we sometimes also denote
as f (·) and g(·).

f (t) is the value of the function f at time t. (Think of f (t) as a sample of f
taken at time t.) Strictly speaking, then, f (t) is not the function f itself.

Functions are single-valued by definition. Therefore

f (t) = g(t) , ∀t ⇐⇒ f = g

I.e., functions are uniquely defined once we know their output values for all
possible input values t
We can define vector addition to create a new function h = f + g by
specifying the value of h(t) for all t, which we do as follows:

h(t) = (f + g)(t) , f (t) + g(t) , ∀t
We define scalar multiplication of the function f by the scalar α to create a
new function g = (αf ) via

(αf )(t) = α · f (t) , ∀t
Finally we define the zero function o as the function that maps to the scalar
value 0 for all t, o(t) = 0 , ∀t.
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Vector Subspaces

A subset V ⊂ X is a subspace of a vector space X if it is a vector space in
its own right.

If V is a subspace of a vector space X , we call X the parent space or
ambient space of V.

It is understood that a subspace V “inherits” the vector addition and
scalar multiplication operations from the ambient space X . To be a
subspace, V must also inherit the zero vector element.

Given this fact, to determine if a subset V is also a subspace one needs to check
that every linear combination of vectors in V yields a vector in V.

This latter property is called the property of closure of the subspace V under
linear combinations of vectors in V.
Therefore if closure fails to hold for a subset V, then V is not a vector subspace.

Note that testing for closure includes as a special case testing whether the zero
vector belongs to V.
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Vector Subspaces - Cont.

Consider the complex vector space X = complex n × n matrices, n > 1, with
matrix addition and scalar multiplication defined component-wise. Are the
following subsets of X vector subspaces?

V = upper triangular matrices. This is a subspace as it is closed under the
operations of scalar multiplication and vector addition inherited from X .

V = positive definite matrices. This is not a subspace as it is not closed
under scalar multiplication. (Or, even simpler, it does not contain the zero
element.)

V = symmetric matrices, A = AT . This is a subspace as it is closed under
the operators inherited from X .

V = hermitian matrices, A = AH (the set of complex symmetric matrices

where AH = (AT ) = (Ā)T ). This is not a subspace as it is not closed under
scalar multiplication (check this!). It does include the zero element.
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Subspace Sums

Given two subsets V and W of vectors, we define their set sum by

V +W = {v + w |v ∈ V and w ∈ W} .

Let the sets V and W in addition both be subspaces of X . In this case we
call V +W a subspace sum and we have

V ∩W and V +W are also subspaces of X
V ∪W ⊂ V +W where in general V ∪W is not a subspace.

In general, we have the following ordering of subspaces,

0 , {0} ⊂ V ∩W ⊂ V +W ⊂ X ,

where {0} is the trivial subspace consisting only of the zero vector (additive
identity) of X . The trivial subspace has dimension zero.
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Linear Independence

By definition r vectors x1, · · · , xr ∈ X are linearly independent when,

α1 x1 + · · ·+ αr xr = 0 if and only if α1 = · · · = αr = 0

Suppose this condition is violated because (say) α1 6= 0, then we have

x1 = − 1

α1
(α2 x2 + · · ·+ αr xr )

A collection of vectors are linearly dependent if they are not linearly
independent.
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Linear Independence - Cont.

Assume that the r vectors, xi , are canonically represented, xi ∈ Fn.

Then the definition of linear independence can be written in matrix-vector
form as

Xα =
(
x1 · · · xr

)α1

...
αr

 = 0 ⇐⇒ α ,

α1

...
αr

 = 0

Thus x1, · · · , xr are linearly independent iff the associated n × r matrix

X , (x1 · · · xr )

has full column rank (equivalently, iff the null space of X is trivial).
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Span of a Set of Vectors

The span of the collection x1, · · · , xr ∈ X is the set of all linear combinations
of the vectors,

Span {x1, · · · , xr} = {y |y = α1x1 + · · ·+ αrxr = Xα, ∀α ∈ F r} ⊂ X

The set V = Span {x1, · · · , xr} is a vector subspace of X .

If, in addition, the spanning vectors x1, · · · , xr are linearly independent we say
that the collection is a linearly independent spanning set or a basis for the
subspace V.

We denote a basis for a subspace V by

BV = {x1, · · · , xr}
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Basis and Dimension

Given a basis for a vector space or subspace, the number of basis vectors in
the basis is unique.

For a given space or subspace, there are many different bases, but they must
all have the same number of vectors.

This number, then, is an intrinsic property of the space itself and is called
the dimension d = dim V of the space or subspace V.

If the number of elements, d , in a basis is finite, we say that the space is
finite dimensional, otherwise we say that the space is infinite dimensional.

Linear algebra is the study of linear mappings between finite dimensional
vector spaces. The study of linear mappings between infinite dimensional
vector spaces is known as Linear Functional Analysis or Linear Operator
Theory.
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Basis and Dimension – Cont.

The dimension of the trivial subspace is zero, 0 = dim{0}.

If V is a subspace of X , V ⊂ X , we have dimV ≤ dimX .

In general for two arbitrary subspaces V and W of X we have,

dim (V +W) = dimV + dimW − dim (V ∩W) ,

and
0 ≤ dim (V ∩W) ≤ dim (V +W) ≤ dimX .

Furthermore, if X = V +W then,

dimX ≤ dimV + dimW ,

with equality if and only if V ∩W = {0}.
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Independent Subspaces and Projections

Two subspaces, V and W, of a vector space X are independent or disjoint
when V ∩W = {0}. In this case we have

dim (V +W) = dimV + dimW .

If X = V +W for two independent subspaces V and W we say that V and
W are companion subspaces and we write,

X = V ⊕W .

In this case dimX = dimV + dimW.

Given two companion subspaces V and W any vector x ∈ X can be written
uniquely as

x = v + w , v ∈ V and w ∈ W .

The unique component v is called the projection of x onto V along its
companion space W.

The unique component w is called the projection of x onto W along its
companion space V.
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Independent Subspaces and Projections – Cont.
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Projection Operators

Given the unique decomposition of a vector x along two companion
subspaces V and W, x = v + w , we define the companion projection
operators PV|W and PW|V by,

PV|W x , v and PW|V x = w

Obviously PV|W + PW|V = I . I.e., PV|W = I − PW|V .

It is straightforward to show that PV|W and PW|V are both idempotent,

P2
V|W = PV|W and P2

W|V = PW|V

where P2
V|W =

(
PV|W

) (
PV|W

)
. For example

P2
V|W x = PV|W

(
PV|W x

)
= PV|W v = v = PV|W x

and since this is true for all x ∈ X it must be the case that P2
V|W = PV|W .

It can also be shown that the projection operators PV|W and PW|V
are linear operators.
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Linear Operators and Matrices

Consider a function A which maps between two vector spaces X and Y,
A : X → Y.

X is called the input space or the source space or the domain.

Y is called the output space or the target space or the codomain.

The mapping or operator A is said to be linear if

A (α1x1 + α2x2) = α1Ax1 + α2Ax2 ∀x1, x2 ∈ X , ∀α1, α2 ∈ F .

Note that in order for this definition to be well-posed the vector spaces X and
Y both must have the same field of scalars F .

For example, X and Y must be both real vectors spaces, or must be both
complex vector spaces.
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Linear Operators and Matrices - Cont.

It is well-known that any linear operator between finite dimensional vectors
spaces has a matrix representation.

In particular if n = dimX <∞ and m = dimY <∞ for two vector spaces
over the field F , then a linear operator A which maps between these two
spaces has an m × n matrix representation over the field F .

Note that projection operators on finite-dimensional vector spaces must have
matrix representations as a consequence of their linearity.

Often, for convenience, we assume that any such linear mapping A is an m× n
matrix and we write A ∈ Fm×n.

Example: Differentiation as a linear mapping between 2nd order polynomials

b + 2c x =
d

dx

(
a + b x + c x2

)
⇐⇒

 b
2c
0

 =

0 1 0
0 0 2
0 0 0

 a
b
c


using the simple polynomial basis functions 1, x , and x2. If a different set of
polynomial basis functions are used, then we would have a different
vector-matrix representation of the differentiation. Again we note:
representations of vectors and operators are basis dependent.
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Two Linear Operator Induced Subspaces

Every linear operator has two natural vector subspaces associated with it.

The Range Space (or Image),

R(A) , A(X ) , {y | y = Ax , x ∈ X} ⊂ Y ,

The Nullspace (or Kernel),

N (A) = {x |Ax = 0} ∈ X .

Note that the nullspace is a subspace of the source space (domain), while the
range space is a subspace of the target space (the codomain).

It is straightforward to show that N (A) and R(A) are linear subspaces using
the fact that A is a linear operator.

When attempting to solve a linear problem y = Ax , a solution exists if and
only if y ∈ R(A).

If y ∈ R(A) we say that the problem is consistent. Otherwise the problem is
inconsistent.
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Two Linear Operator Induced Subspaces – Cont.

The dimension of the range space of a linear operator A is the rank of A,

r(A) = rank(A) = dimR(A) ,

The dimension of the nullspace of a linear operator A is the nullity of A,

ν(A) = nullity(A) = dimN (A) ,

The rank and nullity of a linear operator A have unique values which are
independent of the specific matrix representation of A. They are intrinsic
properties of the linear operator A and invariant with respect to all changes
of representation. Note that, as dimensions, the rank and nullity must take
on nonnegative integer or zero values.

Given a matrix representation for A ∈ Fm×n, standard undergraduate courses
in linear algebra explain how to determine the rank and nullity via LU
factorization (aka Gaussian elimination) to place a matrix into upper echelon
form. The rank, r = r(A) is then given by the number of nonzero pivots while
the nullity, ν = ν(A), is given by ν = n − r .
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Linear Forward and Inverse Problem

Given a linear mapping between two vector spaces A : X → Y the problem of
computing an “output” y in the codomain given an “input” vector x in the
domain,

Ax =
→

y

is called the forward problem.

The forward problem is typically well-posed in that knowing A and given x
one can construct y by (say) a straightforward matrix-vector multiplication.

Given a vector y in the codomain, the problem of determining an x in the
domain for which

y =
→

Ax

is known as an inverse problem.

Solving the linear inverse problem is much harder than solving the forward
problem, even when the problem is well-posed.

Furthermore the inverse problem is often ill-posed compounding the problem
difficulty

Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 24 / 25



Well-Posed and Ill-Posed Linear Inverse Problems

Given am m-dimensional vector y in the codomain, the inverse problem of
determining an n-dimensional vector x in the domain for which Ax = y is said to
be well-posed if and only if the following three conditions are true for the linear
mapping A:

1 y ∈ R(A) for all y ∈ Y so that a solution exists for all y . I.e., we demand
that A be onto, R(A) = Y or, equivalently, that r(A) = m. It it not enough
to merely require consistency for a given y because even the tiniest error or
misspecification in y can render the problem inconsistent.

2 If a solution exists, we demand that it be unique. I.e., we demand that that
A be one-to-one, N (A) = {0}. Equivalently, ν(A) = 0.

3 The solution x does not depend sensitively on the value of y . I.e., we
demand that A be numerically well-conditioned.

If any of these three conditions is violated we say that the inverse problem is
ill-posed.

Condition three is studied in great depth in courses on Numerical Linear Algebra.
In this course, we ignore the numerical conditioning problem and focus on the first
two conditions only.

In particular, we will generalize the concept of solution by looking for a
minimum-norm least-squares solution which will exist even when the first two
conditions are violated.
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